Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Yan Zhang, ${ }^{\text {a }}$ Zhan Shi, ${ }^{\text {b }}$ Zhu Long-Guan, ${ }^{\mathrm{a} *}$ Ru-Ren $\mathrm{Xu}^{\mathrm{a}, \mathrm{b}}$ and Wen-Qin Pang ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.031$
$w R$ factor $=0.078$
Data-to-parameter ratio $=11.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-acetato- $\kappa^{3} O, O^{\prime}: O^{\prime}$-di- μ-trichloro-acetato- $\kappa^{2} O: O^{\prime}$-bis[aqua(trichloroacetato)-(1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$) praseodymium (III)] dimethylformamide disolvate

The reaction of praseodymium(III) trichloroacetate with 1,10phenanthroline (phen), acetic acid and 8-hydroxyquinoline gives the title centrosymmetric complex, $\left[\mathrm{Pr}_{2}\left(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}\right)_{4}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$. The geometry around the $\operatorname{Pr}^{\text {III }}$ ion corresponds to a monocapped square antiprism. Interestingly, the carboxylate groups coordinate in three different modes, viz. monodentate, bridging and bridging-chelating. In the crystal structure, there are weak intermolecular $\mathrm{Cl} \cdots \mathrm{Cl}$ and $\pi-\pi$-stacking interactions.

Comment

Numerous quaternary complexes of lanthanides bearing heterocycle amines have been extensively reported since 1960 (Forsberg, 1973). In recent years, efforts have been actively made to synthesize novel quaternary mixed-anion complexes because of their interesting structures, coordination modes and functional properties (Dong et al., 1993; Rogers \& Rollins, 1995; Niu et al., 1997; Li et al., 2002; Zhu et al., 1999; Zhu \& Kitagawa, 2001). In general, the two anions in these complexes were based on nitrate and aliphatic or aromatic carboxylate ligands. However, systems containing two anions of aliphatic or aromatic carboxylates may show more interesting coordination modes. We report here an example of a quaternary complex, (I), with two anions of aliphatic carboxylates.

The complex is a dimer with a $\operatorname{Pr} \cdots \operatorname{Pr}$ separation of 4.125 (1) \AA, and possesses a center of symmetry. Each Pr atom is nine-coordinate with a monocapped square antiprismatic geometry, involving six O atoms from three $\mathrm{CCl}_{3} \mathrm{COO}^{-}$and two $\mathrm{CH}_{3} \mathrm{COO}^{-}$groups, two N atoms from one phen, and one O atom from one water molecule. The four $\mathrm{CCl}_{3} \mathrm{COO}^{-}$anions in the dimeric complex show two coordination modes; one mode involves bonds to two Pr atoms through O 2 and O 3 and the other mode is monodentate coordination to the Pr atom. The acetate anions are chelated to one Pr atom through atoms O 6 and O 7 ; simultaneously O 7 binds to another Pr atom with distances of 2.636 (3) and 2.399 (3) \AA for $\mathrm{O} 7-\mathrm{Pr} 1$ and $\mathrm{O} 7-$ $\operatorname{Pr} 1^{\mathrm{i}}$ [symmetry code: (i) $-x, 1-y,-z$], respectively. The $\operatorname{Pr}-$ $\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ bond length is similar to that of bridging $\mathrm{Pr}-$

Received 10 February 2003
Accepted 28 February 2003
Online 7 March 2003

Figure 1
ORTEP-3 diagram (Farrugia, 1997) of the title complex, showing the atom-labeling scheme (DMF molecules and H atoms have been omitted for clarity). Displacement ellipsoids are drawn at the 30% probability level. The labeled part of the molecule is related to the unlabeled part by the symmetry operator $(-x, 1-y,-z)$.

Figure 2
The packing of complex (I), showing weak $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions (dashed lines), viewed along the b axis.
$\mathrm{O}\left(\mathrm{CCl}_{3} \mathrm{COO}^{-}\right)$and the $\mathrm{Pr}-\mathrm{N}$ distances are longer than the $\mathrm{Pr}-\mathrm{O}$ distances (see Table 1). The phen ligands are situated in vacant sites and the complex therefore has little steric crowding. As expected, the $\mathrm{Pr}-\mathrm{N}$ distances agree with those of the two ternary complexes bearing similar building blocks, the monomer complex $\left[\operatorname{Pr}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{3}\left(2,2^{\prime} \text {-bipy }\right)_{2}\right]$, (II) (Wang et al., 1991), and the dimer complex $\left[\operatorname{Pr}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{3^{-}}\right.$ (phen) $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\right]_{2}$, (III) (Dong et al., 1990). In (II), all the trichloroacetate ligands are coordinated to the metal in chelating mode and the mean $\operatorname{Pr}-\mathrm{O}$ bond length is
2.582 (4) \AA, which is longer than that of (I) and (III). In complex (III), two coordination modes for the trichloroacetate groups were observed and the $\mathrm{Pr}-\mathrm{O}$ distances for the chelating mode are similar to that in (I), while the $\operatorname{Pr}-$ $\mathrm{O}\left(\mathrm{CCl}_{3} \mathrm{COO}^{-}\right)$distance for the monodentate mode is shorter than that in (I).

In recent years, weak interactions, such as the $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions observed in (I), have been the focus of increased interest (Cui et al., 2001). The Cl atom of the monodentate $\mathrm{CCl}_{3} \mathrm{COO}^{-}$group has a weak interaction with another Cl atom of a bridging $\mathrm{CCl}_{3} \mathrm{COO}^{-}$ligand from a neighboring molecule; the distance is $3.34 \AA$ (see Fig. 2), which is shorter than the sum of the van der Waals radii of $\mathrm{Cl} \cdots \mathrm{Cl}(3.5 \AA)$. Meanwhile, two phen rings from neighboring molecules are parallel to each other and result in significant $\pi-\pi$ stacking, with an interplanar distance of $3.38 \AA$.

Experimental

$\operatorname{Pr}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol})$ was dissolved in a mixture of ethanol $(10 \mathrm{ml})$ and water $(4 \mathrm{ml})$. A solution of 1,10 -phenanthroline (0.84 mmol), 8 -hydroxyquinoline ($\mathrm{HQ}, 1.0 \mathrm{mmol}$) and $6 \mathrm{~mol} \mathrm{l}^{-1}$ $\mathrm{CH}_{3} \mathrm{COOH}(3 \mathrm{ml})$ in a mixture of ethanol $(10 \mathrm{ml})$ and N, N^{\prime}-dimethylformamide (3 ml) was added to the above solution. After 3 d , crystals were obtained. Analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Pr}$: C 31.69, H 2.53 , N 5.28, Pr 17.70\%; found: C 31.48, H 2.47, N 4.62 , Pr 17.43%. HQ is a key factor in the formation of quaternary complexes. In the absence of HQ in the synthesis, no product could be obtained because of the strong acidity. HQ can form $\mathrm{H}_{2} \mathrm{Q}^{+}$with $\mathrm{CH}_{3} \mathrm{COOH}$. Moreover, it can decrease the acidity of the solution and keep a certain amount of $\mathrm{CH}_{3} \mathrm{COO}^{-}$to partly replace $\mathrm{CCl}_{3} \mathrm{COO}^{-}$anions of $\operatorname{Pr}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{3}$. Thus, the quaternary complex was formed.

Crystal data

$\left[\mathrm{Pr}_{2}\left(\mathrm{C}_{4} \mathrm{Cl}_{6} \mathrm{O}_{4}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}-\right.$	$Z=1$
$\left.\quad\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	$D_{x}=1.817 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1592.02$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 7133
$a=10.351(3) \AA$	reflections
$b=12.475(3) \AA$	$\theta=1.8-23.3^{\circ}$
$c=13.424(4) \AA$	$\mu=2.27 \mathrm{~mm}^{-1}$
$\alpha=113.89(3)^{\circ}$	$T=293(2) \mathrm{K}$
$\beta=102.18(2)^{\circ}$	Prism, green
$\gamma=102.786(18)^{\circ}$	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

$V=1455.0(7) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.549, T_{\max }=0.659$
7133 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0368 P)^{2} \\
&+3.6925 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.07 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.76 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

Pr1-O7	$2.399(3)$	Pr1-O6	$2.538(4)$
Pr1-O4	$2.458(4)$	Pr1-O7	$2.636(3)$
Pr1-O1	$2.500(4)$	Pr1-N2	$2.646(4)$
Pr1-O2	$2.502(3)$	Pr1-N1	$2.665(4)$
Pr1-O3			

Symmetry code: (i) $-x, 1-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 5$	$0.88(2)$	$1.96(4)$	$2.748(6)$	$149(6)$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 8$	$0.89(2)$	$1.84(4)$	$2.690(8)$	$159(8)$

All H atoms bonded to C atoms were included in calculated positions with $\mathrm{C}-\mathrm{H}$ distances of 0.93 for most H atoms and $0.96 \AA$ for methyl. They were then included in the refinement in ridingmotion approximation with $U_{\text {iso }}$ fixed at $0.08 \AA^{2} . \mathrm{H}$ atoms bonded to O atoms were refined freely with isotropic displacement parameters. The diffraction was measured to only $\theta=23.3^{\circ}$, and this, together with the lack of low-temperature facilities, limits the precision of the structural results. The maximum electron-density peak is $1.12 \AA$ from Cl4.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL97 (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We thank the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry.

References

Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cui, Y., Chen, J. T., Chen, G., Ren, J., Yu, W. C. \& Qian, Y. T. (2001). Acta Cryst. C57, 349-351.
Dong, N., Wang, H., Barton, R. J. \& Robertson, B. E. (1990). J. Coord. Chem. 22, 191-204.
Dong, D., Zhu, L. G. \& Xu, C. (1993). Chin. J. Struct. Chem. 12, 133-136.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Forsberg, J. H. (1973). Coord. Chem. Rev. 10, 195-226.
Li, X., Jin, L. P., Lu, S. Z. \& Zhang, J. H. (2002). J. Mol. Struct. 604, 65-71.
Niu, S. Y., Yang, Z. Z., Yang, Q. C, Yang,B., Yang, J. Q., Chao, G. D., Yang, E. \& Zhong, S. (1997). Polyhedron, 16, 1629-1635.
Rogers, R. D. \& Rollins, A. N. (1995). Inorg. Chim. Acta, 230, 177-183.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wang, J. R., Dong, N., Wu, G. \& Zheng, P. J. (1991). Chem. J. Chin. Univ. 12, 1284-1288.
Zhu, L. G., Xie, X. P. \& Yu, Q. S. (1999). J. Rare Earths, 17, 12-16.
Zhu, L. G. \& Kitagawa, S. (2001). Chem. J. Chin. Univ. 22, 188-190.

